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Abstract - The society’s insatiable appetites for personal data are 
driving the emergency of data markets, allowing data con- sumers 
to launch customized queries over the datasets collected by a data 
broker from data owners. In this paper, we studyhow the data 
broker can maximize her cumulative revenue by posting 
reasonable prices for sequential queries. We thus propose a 
contextual dynamic pricing mechanism with the reserve price 
constraint, which features the properties of ellipsoid for efficient 
online optimization, and can support linear and non-linear market 
value models with uncertainty. In particular, under low 
uncertainty, our pricing mechanism provides a worst-case regret 
logarithmic in the number of queries. We further extend to other 
similar application scenarios, including hospitality service and 
online advertising, and extensively evaluate all three application 
instances over MovieLens 20M dataset, Airbnb listings in U.S. 
major cities, and Avazu mobile ad click dataset, respectively.The 
analysis and evaluation results reveal that our proposed pricing 
mechanism incurs low practical regret, online latency, and 
memory overhead, and also demonstrate that the existenceof 
reserve price can mitigate the cold-start problem in a posted price 
mechanism, and thus can reduce the cumulative regret. 

Index Terms—personal data market, revenue maximization, 
contextual dynamic pricing, reserve price. 

I. INTRODUCTION 

With the proliferation of Internet of Things (IoTs), tremen- dous 
volumes of data are collected to monitor human behaviorsin daily 
life. However, for the sake of security, privacy, or busi- ness 
competition, most of data owners are reluctant to share their data, 

resulting in a large number of data islands. Thedata isolation 
status locks the value of personal data against potential data 
consumers, such as commercial companies, financial institutions, 
medical practitioners, and researchers. Tofacilitate personal data 
circulation, more and more data brokershave emerged to build 

bridges between the data owners and the data consumers. Typical 

data brokers in industry include Factual, DataSift, Datacoup, 
CitizenMe, and CoverUS. Onone hand, a data broker needs to 
adequately compensate the privacy leakages of data owners during 
the usage of theirdata, and thus incentivize them to contribute 
private data. On the other hand, the data broker should properly 
charge the online data consumers for their sequential queries 

over the 
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behaviors of both underpricingand overpricing can incur the loss of 
revenue at the databroker. Such a data circulation ecosystem is 
conventionally called “data market” in the literature [1]. 

In this paper, we study how to trade personal data for revenue 
maximization from the data broker’s standpoint in online data 
markets. We summarize three major design chal- lenges as follows. 
The first and the thorniest challenge is that the objective function 
for optimization is quite complicated. The principal goal of a data 

broker in data markets is tomaximize her cumulative revenue, 
which is defined as thedifference between the prices of queries 
charged from thedata consumers and the privacy compensations 
allocated tothe data owners. Let’s examine one round of data 
trading as follows. Given a query, the privacy leakages together 
with the total privacy compensation, regarded as the reserve price 

ofthe query, are virtually fixed. Thus, for revenue maximization,an 
ideal way for the data broker is to post a price, whichtakes 
the larger value of the query’s reserve price and market value. 
However, the reality is that the data broker does not know the exact 
market value, and can only estimate it fromthe context of the 
current query and the historical transaction records. Of course, 
loose estimations will lead to different levels of regret: if the 

reserve price is higher than the market value, the query definitely 
cannot be sold, and the regret is zero; if the reserve price is no 
more than the market value,a slight underestimation of the market 
value incurs a lowregret, whereas a slight overestimation causes 
the query notto be sold, generating a high regret. Therefore, the 
initialgoal of revenue maximization can be equivalently converted 

toregret minimization. Considering even the single-round regret 
function is piecewise and highly asymmetric, it is nontrivial forthe 
data broker to perform optimization for multiple rounds. 

Yet, another challenge lies in how to model the market 

values of the customized queries from the data consumers.To 
minimize the regret in pricing online queries, the piv-otal step 
for the data broker is to gain a good knowledgeof their market 
values. However, markets for personal data significantly differ 
from conventional markets in that eachdata consumer as a buyer, 
rather than the data broker as a seller, can determine the product, 

namely a query. In general, each query involves a concrete data 
analysis method and a tolerable level of noise added to the true 
answer, which are both customized by a data consumer [2]. Hence, 
the queries from different data consumers are highly differentiated, 
and are uncontrollable by the data broker. This striking property 
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Fig. 1. A general system model of online personal data markets. (The smile indicates that the posted price is accepted and a deal is made.) 

 

further implies that most of the dynamic pricing mechanisms, 
which target identical products or a manageable number of distinct 
products, cannot apply here. Besides, existing works on data 

pricing, which either considered a single query [3] or investigated 

the determinacy relation among multiple queries but ignored 
whether the data consumers acceptor reject the marked prices, and 
thus omitted modeling the market values of queries, are parallel 
to this work. 

The ultimate challenge comes from the novel online pricingwith 
reserve price setting. For the market value estimationof a query, 
the data broker can only exploit the current and historical queries. 
Thus, the pricing of sequential queries can be viewed as an online 
learning process. In addition to the usual tension between 

exploitation and exploration, our pricingproblem also needs to 
incorporate three atypical aspects. First, the feedback after 
trading one query is very limited.In particular, the data broker 
can only observe whether the posted price for the query is higher 
than its market value or not, but cannot obtain the exact market 
value, which makes standard online learning algorithms 

inapplicable. Second, the reserve price essentially imposes a lower 
bound on the posted price beyond the market value estimation, 
while the ordering between the reserve price and the market value 
is unknown. Besides, the impact of such a lower bound on the 
whole learning process has not been studied. Last but not least, the 
online mode requires our design of the posted price mechanismto 

be quite efficient. In other words, the data broker needs to choose 
each posted price and further update her knowledge about the 
market value model with low latency. 

Jointly considering the above three challenges, we propose a 
contextual dynamic pricing mechanism with the reserve price 
constraint for the data broker to maximize her revenue inonline 
personal data markets. For problem formulation, we first adopt 
contextual/hedonic pricing to model the marketvalues of different 
queries, which are a certain linear or non- linear function of their 

features plus some uncertainty. Besides,we choose the state of the 
privacy compensations under a query as its feature vector. In fact, 
such a feature representationinherits the key principle of cost-plus 

pricing. For posted price mechanism design, we start with the 
fundamental linear model, and covert the market value 
estimation problem todynamically exploiting and exploring the 

market values of different features, i.e., the weight vector in the 
linear model. Specifically, depending on whether a sale occurs 
or not ineach round, the data broker can introduce a linear 
inequalityto update her knowledge set about the weight vector. 
Thus, 

the raw knowledge set is kept in the shape of polytope, which 
makes the real-time task of predicting the range of a query’s market 
value computationally infeasible. To handle this prob- lem, we 

replaces the raw knowledge set with its smallest enclosing 

ellipsoid,   namely   Lö wner-John   ellipsoid.   Under   the  ellipsoid- 
shaped knowledge set, it only requires a few matrix- vector and 
vector-vector multiplications to obtain a lower bound and an upper 
bound on each query’s market value. By further incorporating the 
total privacy compensation, namely the reserve price, as an 

additional lower bound, we define a conservative posted price and 
an exploratory posted price fora query. These two kinds of posted 
prices give different biasesto the immediate rewards (exploitation) 
and the future rewards(exploration). Besides, the choice of which 
price in a certain round hinges on the size measure of the latest 
knowledge set. We further investigate how to tolerate uncertainty, 

and mainlyintroduce a “buffer” in posting the price and 
updating theknowledge set. We finally extend to several non-linear 
modelscommonly used in interpreting market values, including 
log- linear, log-log, logistic, and kernelized models. 

We outline our key contributions in this paper as follows. 
To the best of our knowledge, we are the first to study trading 

personal data for revenue maximization, from the data broker’s 
point of view in online data markets. Additionally,we formulate 

this problem into a contextual dynamic pricing problem with the 
reserve price constraint. 

Our proposed pricing mechanism features the properties of 
ellipsoid to exploit and explore the market values of sequential 
queries effectively and efficiently. It facilitates both linearand 
non-linear market value models, and is robust to some uncertainty. 
In particular, the worst-case regret under low uncertainty is 
O(max(n2 log(T/n), n3 log(T/n)/T )), wheren is the dimension of 
feature vector and T is the total number of rounds. Besides, the time 
and space complexities are O(n2). Furthermore, our market 
framework can also support trading other similar products, which 
share customization, existenceof reserve price, and timeliness 
with online queries. 

We extensively evaluate three application instances over three 
real-world datasets. The analysis and evaluation results reveal that 
our pricing mechanism incurs low practical regret, online latency, 
and memory overhead, under both linear and non-linear market 
value models and over both sparse and densefeature vectors. In 
particular, (1) for the pricing of noisy linearquery under the linear 
model, when n = 100 and the number of rounds t is 105, the regret 
ratio of our pricing mechanism with reserve price (resp., with 
reserve price and uncertainty) is7.77% (resp., 9.87%), reducing 
57.19% (resp., 45.64%) of the 
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regret ratio than a risk-averse baseline, where the reserve priceis 
posted in each round; (2) for the pricing of accommodation rental 
under the log-linear model, when n = 55, t = 74, 111, and the ratio 
between the natural logarithms of market value and reserve price 
is set to 0.6, the regret ratio of our pricing mechanism is 3.83%, 
reducing 77.46% of the regret ratio compared with the risk-averse 
baseline; (3) for the pricingof impression under the logistic 
model, when n = 1024 andt = 105, the regret ratios of our pure 
pricing mechanism are 8.04% and 0.89% in the spare and dense 
cases, respectively. Furthermore, the online latencies of three 
applications perround are in the magnitude of millisecond, and the 
memory overheads are less than 160MB. 

We instructively demonstrate that the reserve price can 
mitigate the cold-start problem in a posted price mechanism, and 
thus can reduce the cumulative regret. Specifically, forthe 
pricing of noisy linear query, when n = 20 and t = 104,our 
pricing mechanism with reserve price (resp., with reserve price and 
uncertainty) reduces 13.16% (resp., 10.92%) of the cumulative 
regret than without reserve price; for the pricing of 
accommodation rental, as the reserve price is approaching the 
market value, its impact on mitigating cold start is more evident. 
These findings may be of independent interest. 

 

II. TECHNICAL OVERVIEW 

In this section, we introduce system model and problem 
formulation, and also sketch the fundamental design. 

 

A. System Model 

As shown in Fig. 1, we consider a general system model for 

online personal data markets. There are three kinds of entities:data 

owners, a data broker, and data consumers. 
The data broker first collects massive personal data from data 

owners. Then, the data consumers comes to the data market in 
an online fashion. In round t [T ], a data consumer arrives, and 
makes her customized query Qt over the collected dataset. 
Specifically, Qt comprises a concrete data analysis method and 
a tolerable level of noise added to the true answer [2]. Here, the 
noise perturbation can not only allow thedata consumer to control 
the accuracy of a returned answer, but also preserve the 
privacies of data owners. 

Depending on the query Qt and the underlying dataset, the 
data broker quantifies the privacy leakage of each data owner, 
and needs to compensate her if a deal occurs. The data broker then 
offers a price pt to the data consumer. If pt is nomore than the 
market value vt     of Qt, this posted price will be accepted. The 
data broker charges the data consumer pt, returns the noisy 
answer, and compensates the data owners as planned. Otherwise, 
this deal is aborted, and the data consumergoes away. We note that 
to guarantee non-negative utility atthe data broker no matter 
whether a deal occurs in round t ornot, the posted price pt should 
be no less than the total privacycompensation qt, where qt functions 
as the reserve price, and can be pre-computed when given Qt. 

 

B. Problem Formulation 

We now formulate the regret minimization problem forpricing 

sequential queries in online personal data markets. 

We first model the market values of queries. We use an ele- 
mentary assumption from contextual pricing in computational 
economics [11]–[13] and hedonic pricing in marketing [14], [15], 
which states that the market value of a product is a deterministic 
function of its features. Here, the product is a query, and the 
function can be linear or non-linear. Besides,to make the pricing 
model more robust, we allow for some uncertainty in the market 

value of each query. In particular,for a query Qt, we let xt Rn 

denote its n-dimensional featu∈re  vector,  let f  : Rn     R   denote 
the mapping from thefeatur›→e vector xt  to the deterministic part 
in its market value,and let δt R denote the random variable in its 

market val∈ue,which  is  independent  of  xt.  In  a  nutshell,  vt   = f 
(xt)+ δt. 

We next identify the features of a query for measuringits 
market value. One naive way is to directly encode thecontents 
of the query, including the data analysis method and the noise 

level. However, the query alone, especially the data analysis 

method, is hard to embody its economicvalue. Thus, we turn to 
utilizing the underlying valuations from massive data owners about 
the query, namely the privacycompensations, as the feature vector. 
We give some commentson such a feature representation: (1) The 
market value of a query depending on the privacy compensations 

inherits the core principle of cost-plus pricing [16], [17], and has 
been widely used in personal data pricing [2], [9], [10]. In 
particular,cost-plus pricing states that the market value of a 
productis determined by adding a specific amount of markup to its 
cost. Here, the cost is the total privacy compensation, the 
determinacy is reflected in the feature representation, and the 

markup is realized by setting the reserve price constraint. 
(2) The privacy compensations are observable by the databroker, 
and can help her to discriminate the economic values of distinct 
queries. For example, the privacy compensationsare higher, 
which implies that the privacy leakages to thedata owners are 
larger, the knowledge discovered by the data consumer is richer, 
and thus the market value of the queryto the data consumer 
should be higher. (3) Considering the large scale of data owners, 
the dimension of feature vectorcan be prohibitively high. Under 
such circumstance, we can apply some celebrated dimensionality 
reduction techniques, e.g., Principal Components Analysis (PCA). 
Yet, we can also apply aggregation/clustering to the privacy 
compensations, and regard the aggregate results as the feature 
vector, where its dimension n controls the granularity of 
aggregation. For exam-ple, we can sort the privacy compensations, 
and evenly divide them into n partitions. We sum the privacy 
compensations falling into a certain partition, and thus obtain a 
feature. Inthis aggregation pattern, one extreme case is n = 1, 
wherethe only feature is the total privacy compensation. Another 
extreme case is n equal to the number of data owners, where every 
feature corresponds to a data owner’s individual privacy 

compensation. 

We finally define the cumulative regret of the data broker due to 
her limited knowledge of market values. We considera game 
between the data broker and an adversary. Duringthis game, 
the adversary chooses the sequence of queries Q1, Q 2 , . . . , QT , 
selects the mapping f , but cannot controlthe uncertainty δt in 
each round t, i.e., she can determine the 
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t   ≤ 1 then ∫ 

αt 

+1 

t 

part f (xt) in the market value vt. In contrast, the data broker 

can only passively receive each query Qt, and then post a price 

 
 

  Algorithm 1: Online Personal Data Pricing  

Input:  A1 =√R2In×n, c1 = 0n×1 , an uncertainty parameter 
 

 

pt. If the posted price is no more than the market value, i.e., δ =    2 log Cσ log T , a threshold G 
∈ 

pt ≤ vt, a deal occurs, and the data broker earns a revenue of pt. Output: Posted price pt in each round t [T ] 

Otherwise, the deal is aborted, and the data broker gainsno 

revenue. We define the regret in round t as the difference 

1 for t = 1, 2 , . . . , T do 
2 Et = {θ ∈ Rn| (θ − ct)

T  A−1 (θ − ct) ≤ 1}; 
n 

between the adversary’s revenue and the data broker’s revenue 3 Receive a query Q
t with thet feature vector xt ∈ R ; 

for trading the query Qt, i.e., 
0 if q  > v , 

4 Determine the reserve price qt of Qt; 
5 bt = √Atxt ; 

xt
T At xt 

t t 6 p = min ∈E  xt
T θ = xt

T (ct − bt); 

p∗ t   δ t t t t t 

Rt = max p∗ Pr (p∗ ≤ v ) − p 1 {p  ≤ v } otherwise. 

7 p̄t   = maxθ∈Et   xt      θ = xt 

 
t 

īf  qt  ≥ p̄t  + δ  theTn T 

(ct  + bt); 

t t 
8

 At+1 = At; ct+1 = ct; 

Hpreicre  ianrethehifigrhsetrbrtahnacnh,thifethmearreksetrvveapluriec,e tahnedrethiuss nthoe rpeogsrtetd.  10
9
 

This is because under such circumstance, no matter whether 11 
else continue; 

if p¯ − 
√   then 

the adversary knows the market value in advance or the data 12 t p  = 2  x T A x  > ,    ,
 

broker does not, there is definitely no deal/revenue. Besides, 
¯ 

Post the price p   = max    q , 
pt +p̄t 

= x T c  ; 
13 

p∗ is the adversary’s optimal posted price to maximize her 14 

ext pected  revenue  in  round  t,  where  the  expectation  is  taken 

t 

if pt is rejected then 
pt +p̄t −(p  +δ) 

t  ¯ 2 t t 

 
T 

over δt. When δt is omitted, the adversary will just post the 15 αt   = ¯ √2 
x   c −p −δ 

 

x T      
t =   t t       t ; 

market value, if the reserve price is no more than the market 16 if − 1  ≤ α 
t     A tx t xt 

T Atxt 

value, i.e., q t ≤ pt
∗ = vt, and Rt will change to: 

n 

n2 

t+1 = 

1 − αt
2

 
2 At 

0 if q  > v , 17 n   –  1 
,
 

Rt  = 
t t 

(1) 2 (1 + nαt) b b T 

v — p 1 {p  ≤ v } otherwise. − t     t ; 
ct+1 = ct(n− +1+1n)α(t 1b+t; αt) 

At  last,  consideringt  the tquerites  cant    be  chosen  adversarially, 
e.g., by other competitive data brokers or malicious data 18 consumers, 
our design goal is to minimize the total worst-case 19 regret 

accumulated over T rounds. 20 else 

C. Fundamental Design Under Linear Market Value Model 

 
else 
 

 

n+1 

 

At+1 = At; ct+1 = ct; 

 

 
¯
pt +p̄t  −(p  −δ) T 

21 α   √2    x     c  −p   +δ   t  = T         t √t t         t 
 

 

Due to space limitations, we sketch our proposed pricing 22 

x 

if − 1 ≤ −
t
 

A x = 
≤

t 1t 
then 

x T A x  ; 
t t  t 

mechanism under the linear market value model with σ- 

subGaussian uncertainty in Algorithm 1. Interested readers 

 

n 

At+1 = 
n2 1 −  α 

2    ∫ 
t 

 

cdaensigrnefdeertatiols,oaunralfyuslel saorfticloemipnlex[1it8ie]s faonrddwesoirgsnt-cparsiencreipglreest,  23 
 

 

 
 

n2 − 1 , 

—
    2 (1 − nαt)     b b T ; 

(n + 1) (1 − α )   t    t 
t 

extensions to non-linear market value models, application 
scenarios, evaluation results, and related work. 

 
 

 
 

24 else 

ct+1 = ct +  1−nαt bt; 
n 
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