
 160

Alinteri J. of Agr. Sci. (2024) 39(2): 160-165

e-ISSN: 2587-2249

info@alinteridergisi.com

http://dergipark.gov.tr/alinterizbd

http://www.alinteridergisi.com/

SEPTIC: Vulnerabilities in the DBMS and injection

attacks are noted

1.S. Anitha,2.Paramhans Yadav,3.Kakunuri Sandhya,4.Pooduri

Abhilash,5.Penumatasa Sai pramodvarma

1.Asst.Professor, Computer science and Engineering

CMR Engineering College, Medchal , T.S , India

2,B.Tech ,Computer Science and Engineering

CMR Engineering College, Medchal,T.S, India

Abstract:

Although databases are still the most

widely used backend storage in businesses,

injection attacks can be carried out against

them since they are frequently connected

with weak applications like web

frontends.Because of a semantic

discrepancy between how SQL queries are

actually processed by databases and how

they are commonly understood to be

performed, these attacks are particularly

powerful.This results in minute

vulnerabilities in the way apps validate

input. The method for preventing DBMS

attacks that we present in this paper, called

SEPTIC, can also help identify application

vulnerabilities. The method was put into

practice in MySQL and tested in

experimental settings with different

protection strategies.In contrast to other

solutions, our data demonstrate that

SEPTIC produces neither false positives

nor false negatives.Additionally,

they demonstrate that a minor performance

overhead—roughly 2.2%—is introduced

by SEPTIC.

I. INTRODUCTION

WEB applications have been around for

more than two decades and are now an

important component of the economy, as

they often serve as an interface to various

business related activities. Databases

continue to be the most commonly used

backend storage in enterprises, and they

are often integrated with web applications.

However, web applications can have

vulnerabilities, allowing the data stored in

the databases to be compromised. SQL

injection attacks (SQLI), for example,

continue to rise in number and severity

[2], [14]. Commonly used defenses are

validation functions, web application

firewalls (WAFs), and prepared

statements. The first two inspect web

application inputs and sanitize those that

are considered dangerous, whereas the

third bounds inputs to placeholders in the

SQL queries.1 Other anti-SQLI

mechanisms have been developed but less

adopted. Some of these monitor and block

SQL queries that deviate from specific

models, but the inspection is made without

full knowledge about how they are

processed by the DBMS [5], [6]. In all

these cases, developers and system

mailto:info@alinteridergisi.com
http://dergipark.gov.tr/alinterizbd
http://www.alinteridergisi.com/

1.S. Anitha,2.Paramhans Yadav,3.Kakunuri Sandhya,4.Pooduri Abhilash,5.Penumatasa Sai pramodvarma

Alınteri Journal of Agriculture Sciences 39(2): 160-165

 161

administrators make assumptions about

how the server-side scripting language and

the DBMS work and interact, which

sometimes are simplistic, whereas in

others are blatantly wrong. For example,

programmers usually assume that the PHP

function mysql_real_escape_stringalways

effectively sanitizes inputs and prevents

SQLI attacks, which is not true. Also, they

often assume that values retrieved from a

database do not need to be validated

before being inserted in a query, leading to

second-order injection vulnerabilities. This

is visible when, for instance, the code

admin’ - - is sanitized by escaping the

prime character before sending it to the

database, but the DBMS unsanitizes it

before actually storing it. Later, the code is

retrieved from the database and used un

sanitized in some query, carrying out the

attack. Such simplistic/wrong assumptions

seem to be caused by a semantic mismatch

between how an SQL query is expected to

run and what actually occurs when it is

executed (e.g., the programmer expects it

to be sanitized but the DBMS unsanitized

it). This mismatch may lead to

vulnerabilities, as the protection

mechanisms may be ineffective (e.g., they

may miss some attacks). To avoid this

problem, SQLI attacks could be handled

inside, after the server-side code processes

the inputs and the DBMS validates the

queries, reducing the amount of

assumptions that are made. The mismatch

and this solution are not restricted to web

applications, meaning that the same

problem can be present in other business

applications. In fact, injection attacks are a

generic form of attack, transversal to all

applications that use a database as

backend. This idea of handling attacks

inside has been quite successful in the

realm of binary applications, to stop

attacks irrespectively of the developers

ability to followsecure programming

practices or not. In that case, inside means

that protection mechanisms are inserted in

programming libraries or operating

systems. Examples include address space

layout randomization, data execution

prevention, or canaries/stack cookies. In

this paper, we propose a similar idea for

applications backed by databases. We

propose to block injection attacks inside

the DBMS at runtime. We call this

approach SElf- ProtecTIng databases from

attaCks (SEPTIC). The DBMS is an

interesting location to add protections

against such attacks because it has an

unambiguous knowledge about what will

be considered as expressions clauses,

predicates, and of an SQL statement. No

mechanism that actuates outside of the

DBMS has such knowledge. We address

two categories of database attacks: SQL

injection attacks, which continue to be

among those with highest risk and for

which new variants continue to appear and

stored injection attacks, including stored

cross-site scripting, which also involve

SQL queries. For SQLI, we propose to

catch the attacks by comparing queries

with query models, improving an idea that

has been previously used only outside of

the DBMS [5], [6] and by comparing

queries with validated queries with a

similarity method, accuracy. improving

detection For stored injection, we employ

plugins to deal with specific attacks before

data are inserted in the database. SEPTIC

relies on two newconcepts. Before

detecting attacks, the mechanism can be

trained by forcing calls to all queries in an

application. The result is a set of query

models. However, as training may be

incomplete and not cover all queries, we

introduce the notion of putting in

quarantine queries at runtime for which

SEPTIC has no query model. The second

concept, aging, deals with updates to

query models after a new release of an

application, something that is inevitable in

real world software. Both concepts allow a

reduction of the false negative (attacks not

detected) and false positive (alerts for

nonattacks) rates.

 Architecture and data flows of SEPTIC.

II. EXISTING SYSTEM

1.S. Anitha,2.Paramhans Yadav,3.Kakunuri Sandhya,4.Pooduri Abhilash,5.Penumatasa Sai pramodvarma

Alınteri Journal of Agriculture Sciences 39(2): 160-165

 162

AMNESIA [17] and CANDID [3] are two

of the first works about detecting SQLI by

comparing the structure of an SQL query

before and after the inclusion of inputs and

before the DBMS processes the queries.

Both use query models to represent the

queries and do detection. AMNESIA

creates models by analyzing the source

code of the application and extracting the

query structure. Then, AMNESIA

instruments the source code with calls to a

wrapper that compares queries with

models and blocks attacks. CANDID also

analyzes the source code of the application

to find database queries, then simulates

their execution with benign strings to

create the models. On the contrary,

SEPTIC does not involve source code

analysis or instrumentation. With SEPTIC,

we aim to make the DBMS protect itself,

so both model creation and attack

detection are performed inside the DBMS.

Moreover, SEPTIC aims to handle the

semantic mismatch problem, so it analyzes

queries just before they are executed,

whereas AMNESIA and CANDID do it

much earlier. These two tools also cannot

detect attacks that do not change the

structure of the query (syntax mimicry).

 Buehrer et al. [6] present a similar

scheme that manages to detect mimicry

attacks by enriching the models (parse

trees) with comment tokens. However,

their scheme cannot deal with most attacks

related with the semantic mismatch

problem. SqlCheck [43] is another scheme

that compares parse trees to detect attacks.

SqlCheck detects some of the attacks

related with semantic mismatch, but not

those involving encoding and evasion.

Again, both these mechanisms involve

modifying the application code, unlike

SEPTIC.

DIGLOSSIA [42] is a technique to

detect SQLI attacks that was implemented

as an extension of the PHP interpreter. The

technique first obtains the query models

by mapping all query statements’

characters characters to shadow except

user inputs,and computes shadow values

for all string user inputs. Second, for a

query execution, it computes the query and

verifies if the root nodes from the two

parsed trees are equal. Like SEPTIC,

DIGLOSSIA detects syntax structure and

mimicry attacks but, unlike SEPTIC, it

neither detects second-order SQLI once it

only computes queries with user inputs,

nor encoding and evasion space characters

attacks as these attacks do not alter the

parse tree root nodes before the malicious

user inputs are processed by the DBMS.

Although better than AMNESIA and

CANDID, it does not deal with all

semantic mismatch problems.

Disadvantages

o There is no SEPTIC which did not report

false positives and did not miss detections

(false negatives).

o There is no Process for complex and

dynamic queries.

III. PROPOSED SYSTEM

A query is represented by a list of stacks in

the proposed system's database

management system (DBMS). While this

is the most popular approach, other

DBMSs might use other data structures. In

this scenario, the tests for attack detection

would need to be modified to take

advantage of the information that is now

accessible, or it would be feasible to

translate across data structures.

 The administrator must still exert some

manual labor with SEPTIC in order to

evaluate the QM in the quarantine data

store or to start the training. Although a lot

of work was spent into removing these

kinds of operations off the crucial path of

deploying an application into the field, it

would have been ideal to have a fully

automated approach.

 Queries can be processed if they match a

QM from an earlier version of the program

thanks to the aging process.It's possible,

1.S. Anitha,2.Paramhans Yadav,3.Kakunuri Sandhya,4.Pooduri Abhilash,5.Penumatasa Sai pramodvarma

Alınteri Journal of Agriculture Sciences 39(2): 160-165

 163

though, that these models are no longer

appropriate because they allow attacks to

suit these QMs. Using a more aggressive

senescence period is one way to get around

this restriction, but there are trade-offs that

must be well understood.

 SQL injection is the main focus of the

current evaluation. To fully detect stored

injection attacks, like as XSS, more work

would be required.

Advantages

➢ A log with all analyzed queries was

checked to determine if there were

malicious queries that had remained

unblocked.

➢ The log of attacks was verified to find

out if SEPTIC had erroneously

flagged a benign query as malicious

(false positives).

IV. SYSTEM ARCHITECTURE

V.IMPLEMENTATION

⚫ DataOwner

 The data owner uploads their data to

the cloud server using this module. The

data owner encrypts the file and the index

name before storing them in the cloud for

security reasons.A particular file may be

able to be deleted by the data

encryptor.Additionally, he will be able to

see the transactions based on the files he

uploaded to the cloud and perform the

subsequent tasks: Owners of Register and

Login Data, Create digital signatures based

on desc and add data material about the

military, courts, government, and sports,

such as ccat, cname, cpublication, and

ccreato. Browse, enc data desc, upload,

and include a picture. View every piece of

data together with ratings and ranks using

a digital signature.View every piece of

uploaded data and the ranking with no

digital signature. View the file download

request and provide consent.SQL

Procedures --- Separate the entire page into

two sections: one for inputting DBMS

queries and the other for results display.

SQL Injection occurs when a query is not

complete (insert,update,select,delete).

• DataUser

 The user enters his or her password

and user name to log in to this

module.User actions after logging in

include seeing your profile,Ask the

application server for the secret key, then

see the response. Use a keyword to search

data, read full details, and, with

permission, immediately obtain the secret

key. Verify the signature before

downloading the file. Should the signature

be incorrect, do not download

• ApplicationServer

 In order to provide data storage

services, the application server

oversees a cloud and performs certain

tasks like viewing all data owners and

authorizing View and approve each

end user. View all content with

rankings and ratings that has a digital

signature, or view all content with

rankings and ratings that doesn't have

one. observe user search activity, View

every SQL Injection Intruder along

with their IP address, date, and time.

1.S. Anitha,2.Paramhans Yadav,3.Kakunuri Sandhya,4.Pooduri Abhilash,5.Penumatasa Sai pramodvarma

Alınteri Journal of Agriculture Sciences 39(2): 160-165

 164

View the chart of all documents

ranked. View every intrusive party and

provide a link to the chart (name of the

number of attacked documents).

⚫ SignatureGenerator

 The person who creates the

digital signature is known as the signature

generator. They can also perform the

following tasks: login, view all owner

papers, provide the choice to create a

digital signature, view all data contents

with ranks, and provide the option to

create a secret key using RSA.

VI.CONCLUSIONANDFUTURE

WORK

This study investigated a novel defense

against online and commercial application

database threats. It proposed the notion of

intercepting attacks within the database

management system, so shielding it

against stored injection and SQL injection

attacks.Furthermore, we demonstrated that

sophisticated assaults, such as those

connected to the semantic mismatch issue,

can be identified and stopped by

implementing protection within the

database management system.Secondly, it

offered a method for determining

application code vulnerabilities in the

event that assaults were discovered.

Additionally, SEPTIC—a method built

within MySQL—was presented in this

study.SEPTIC uses a learning phase, as

well as quarantine and aging procedures

that deal with query models—creating and

managing them—to perform detection.

The method was tested with open-source

PHP web apps and other kinds of

programs, as well as with artificially

created code that had vulnerabilities added.

According to this evaluation, the

mechanism outperformed all other tools in

the literature and the WAF that is most

frequently used in practice in detecting and

blocking the attacks it was designed to

handle. It was also able to identify

application code vulnerabilities when an

attack tries to exploit them. An impact of

about 2.2% is shown by the performance

overhead evaluation of SEPTIC inside

MySQL, indicating the applicability of our

method in real-world systems.

REFERENCES:

[1] B. Ahuja, A. Jana, A. Swarnkar, and R.

Halder, “On preventing SQL injection

attacks,” Adv. Comput. Syst. Secur., vol.

395, pp. 49–64, 2015.

[2] AkamaiTechnologie,Cambridge,MA,US

A, “Q1 2016 state of the Internet/ security

report,” Tech. Rep., vol. 3, no. 1, Jun. 2016.

[3] S.Bandhakavi,P.Bisht,P.Madhusudan,and

V. N. Venkatakrishnan, “CANDID:

Preventing SQL injection attacks using

dynamic candidate evaluations,” in Proc.

14th ACM Conf. Comput. Commun. Secur.,”

Oct. 2007, pp. 12–24.

[4] C. A. Bell, Expert MySQL. New York,

NY, USA: Apress, 2007.

[5] S.W.BoydandA.D.Keromytis,

“SQLrand: Preventing SQL injection

attacks,” in Proc. 2nd

Appl.CryptographyNetw.Secur.Conf.,2004,

pp. 292–302.

[6] G.T. Buehrer, B. W.Weide, and P.

Sivilotti, “Using parse tree validation to

prevent SQL injection attacks,” in Proc. 5th

Int. Workshop Softw. Eng. Middleware, Sep.

2005, pp. 106– 113.

[7] E. Cecchet, V. Udayabhanu, T. Wood,

and P. Shenoy, “BenchLab: An open testbed

for realistic benchmarking of web

applications,” in Proc. 2nd USENIX Conf.

Web Appl. Develop., 2011, pp. 37–48.

[8] M. Ceccato, C. D. Nguyen, D. Appelt,

and L.C. Briand, “SOFIA: An automated

security oracle for black-box testing of SQL-

injection vulnerabilities,” in Proc. 31st

IEEE/ACMInt. Conf. Autom. Softw. Eng.,

Sep. 2016,pp. 167–177.

1.S. Anitha,2.Paramhans Yadav,3.Kakunuri Sandhya,4.Pooduri Abhilash,5.Penumatasa Sai pramodvarma

Alınteri Journal of Agriculture Sciences 39(2): 160-165

 165

[9] J. Clarke, SQL Injection Attacks and

Defense. Rockland, MA, USA: Syngress,

2009.

[10] Common Vulnerabilitiesand

Exposures,2014.[Online].Available:http://cve

.mitre.org

[11] SolidIT: DB-Engines Ranking, Aug.

2015.

[Online].Available:http://dbengines.com/en/r

anking

[12] A. Douglen, “SQL smuggling or, the

attack that wasn’t there,” COMSEC

Consulting, Inf. Secur., London, U.K., Tech.

Rep., 2007.

[13] M. Dowd, J. Mcdonald, and J. Schuh,

Art of Software Security Assessment.

London, U.K.: Pearson Edu., 2006.

[14] J. Fonseca, N. Seixas, M.Vieira, and H.

Madeira, “Analysis of field data on web

security vulnerabilities,” Trans. Dependable

Secure Comput., vol. 11, no. 2, pp. 89–100,

Mar./Apr.2014.

[15] Gambas, 2015. [Online]. Available:

http://gambas.sourceforge.net/

[16] G. Modelo-Howard, C. Gutierrezand,

F. Arshad, S. Bagchi, and Y. Qi., “pSigene:

Webcrawling to generalize SQL injection

signatures,” in Proc. 44th IEEE/IFIP Int.

Conf. Dependable Syst. Netw., Jun. 2014, pp.

45–56.

[17] W. Halfond and A. Orso, “AMNESIA:

analysis and monitoring for neutralizing

SQL- injection attacks,” in Proc. 20th

IEEE/ACM Int. Conf. Autom. Softw. Eng.,

Nov. 2005. pp. 174– 183.

[18] M. Howard and D. LeBlanc, Writing

Secure Code for Windows Vista, 1st ed.,

Microsoft Press Redmond, WA, USA, 2007.

http://cve.mitre.org/
http://cve.mitre.org/
http://gambas.sourceforge.net/

